TOOLS YOU CAN USE:
Practical Team Science Guidance
INTRODUCTION

"Team research, especially interdisciplinary research, is characterized by synergies among experts that can transform both scholars and scholarship“

– John Cacioppo, PhD, the Tiffany and Margaret Blake Distinguished Service Professor in Psychology, The University of Chicago, from the Arete Initiative website http://arete.uchicago.edu/ (2010)
Brief Bio

- **Research Information/Publishing (3+ yrs)**
 - Vice President, Strategic Alliances, Global Academic Relations, Elsevier

- **Academia (20+ yrs)**
 - Adjunct Lecturer, School of Professional Studies, Philanthropy & Nonprofit Program, Northwestern University
 - Senior Lecturer and Research Assistant Professor, Northwestern University
 - Assistant Chair, Molecular Biosciences; Associate Director, IBiS Graduate Program (Arts & Sci), Northwestern University and Administrative Director for multiple NIH T32’s
 - Director, Office of Research Development (Central Admin)
 - Director, Research Training Program, Children’s Memorial Research Center
 - Director, Research Team Support & Development, NUCATS Institute, Northwestern University (Med Sch)
 - Director/Co-director
 - BioOpportunities, BioSurvival Skills, Pathway to the Professoriate
 - Navigating the Professoriate, Chicago Collaboration for Women in STEM

 - Undergrad, PhD, Postdoc training

- **Pharma (2.5 yrs)**
 - Anti-infective research, Abbott Laboratories

- **Other Nonprofit Experience (6+ yrs)**
 - Editor-in-Chief, AWIS Magazine
 - Founding President, National Organization of Research Development Professionals (NORDP)
Collaboration, Networking and Teams

- Connecting researchers and resources in pursuit of large collaborative projects
- Compiled a 1.9K+ reference Team Science resource library
- Published primary research findings that inform effective collaboration, especially for science teams
- Developed and taught one of the first-ever Team Science graduate courses, co-developed an online Team Science course
- Chaired the Science of Team Science Conference for its first 3 years
- Team science consultant for almost two dozen US universities
- Involved with the US National Academies NRC team science report; UK The Academy of Medical Sciences team science initiative
What is Team Science?

Cross-disciplinary Research

Collaboration

Team Science
Cross-disciplinarity

- **(Uni)Disciplinary** research

- **Three Cross-disciplinary** research orientations
 - Combine or integrate from more than one field
 - Concepts, Methods, and Theories
 - **Multidisciplinary**
 - Independent, Sequential, Divisional
 - Exchange
 - **Interdisciplinary**
 - Joint, Interactive, Partnership
 - Dialogue, Hybridization, Complementary
 - **Transdisciplinary**
 - Integrative, Interdependence, Emergence
 - Reciprocity, Discourse, Share Vocabulary, Extends
Collaboration

Figure 1
Stage Models of Collaboration

<table>
<thead>
<tr>
<th>Coexistence</th>
<th>Communication</th>
<th>Cooperation</th>
<th>Coordination</th>
<th>Coalition</th>
<th>Collaboration</th>
<th>Coadunation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peterson Model (1991)

1
“Networking”

2 3 4 5
Levels of Community Linkage Model (Hogue, 1993)

1 2 4 3

1 2 3 4 5
“Networking” “Partnering” “Merging” “Unifying” Levels of Integration Model (Gajda, 2004)

1 2 3 4 5 6 7
Seven Stage Model

Translating Science to Practice

- There is an increased demand for team science initiatives in academia and by external funding agencies.

- Coordination costs mean that team science takes more time, at least proximally; distal payoff in terms of acceleration.

- Imperative that we understand the most effective practices for productive cross-disciplinary collaboration and team science.

- Then train individual investigators, institutional leaders, and funders to employ them.
TEAM SCIENCE
Volume 2, Issue 2 – 2012

In our new issue, academic leaders around the globe share their knowledge of and experience with team science. Authors from the United States, Germany, Malaysia, and India explore team science in terms of institutional and national influence, team science tools and leadership, team formation and research networking systems.

Case Study Approach:

- What was the nature/impetus for the collaboration?
- What factors helped the team build trust?
- What factors threatened that trust?
- How did the team use communication effectively?
- What communication issues were problematic for the team?
- How did the team manage conflict?
- What role, if any, do power and hierarchical relationships play in this case?
- What strategies did the team employ to share credit?
The Toolbox Project1,2 Collaborative Communication Workshop provides a philosophical yet practical enhancement to cross-disciplinary, collaborative science. Rooted in philosophical analysis, the Toolbox workshop enables investigators, research development professionals, project managers, and collaborators to engage in a structured dialogue about their research assumptions and cross-disciplinary collaboration. This yields both self-awareness and mutual understanding, supplying individuals with the robust foundation needed for effective collaborative research. Led by Toolbox Project Facilitators, Workshop participants will engage in small group discussion and share respective views in response to a number of probing statements about science motivation, methodology, confirmation, objectivity, values, and reductionism.

Toolbox Questionnaire

<table>
<thead>
<tr>
<th>Philosophical domain and issue</th>
<th>Core question</th>
<th>Probing Statements</th>
</tr>
</thead>
</table>
| **Motivation** | Does the principal value of research stem from its applicability for solving problems or its potential for making basic discoveries? | 1. Applied research is more important to me than basic research.
Disagree 1 2 3 4 5
Agree 1 2 3 4 5
2. Cross-disciplinary, collaborative research is better suited to addressing applied questions than basic questions.
Disagree 1 2 3 4 5
Agree 1 2 3 4 5
3. My research primarily addresses basic questions.
Disagree 1 2 3 4 5
Agree 1 2 3 4 5
4. The importance of our project stems from its applied aspects.
Disagree 1 2 3 4 5
Agree 1 2 3 4 5
5. The members of this team share similar views concerning aspects of basic and applied research.
Disagree 1 2 3 4 5
Agree 1 2 3 4 5 |
Collaboration Readiness

- On-line diagnostic survey for geographically distributed collaborations. The survey probes factors that may strengthen or weaken the collaboration. The Wizard provides both personal and project-level reports to help build successful and productive collaborative projects.

A Field Guide/Partner Agreement

Collaboration & Team Science:
A Field Guide

- Overall Goals & Vision
- Who Will Do What
- Sharing/Storing Reagents & Data
- Authorship, Credit
- Contingencies & Communicating
- Conflict of Interest

http://teamscience.nih.gov

Team Science Toolkit

An interactive website to help you support, conduct and study team-based research.

Discover what resources are available...

"The Toolkit provides a wealth of resources for team scientists, including practical tools to use with your colleagues, such as team assessment guides and training resources."

—Holly Falk-Krzesinski, Vice President, Global Academic & Research Relations, Elsevier

Resources
- Tools
- Measures
- Bibliography

Connections
- Blog
- Expert Directory
- Listserv

Recently Added Resources
- New Directions in Assessing Individuals and Groups
- Finding the Needle in the Haystack: A Public...
The **Science of Team Science (SciTS) listserv** facilitates conversation among individuals who are engaged in, studying, or managing team science, in the US and internationally. The listserv is maintained collaboratively by the SciTS Team at the National Cancer Institute, Division of Cancer Control and Population Sciences, Behavioral Research Program (http://cancercontrol.cancer.gov/brp/scienceteam) at the NIH.

- **TO SUBSCRIBE:** Send an email with a blank subject line to: listserv@list.nih.gov. The message body should read: subscribe SciTSlst [your full name]. Please do not include the brackets. For example, for Robin Smith to subscribe, the message would read: subscribe SciTSlst Robin Smith. You will receive a confirmation email.

- **TO POST TO THE LISTSERV:** Send an email to SciTSlst@list.nih.gov. Any subscriber may post to the list.

- **TO VIEW THE ARCHIVES:** To view the archives of all previous postings, go to: http://list.nih.gov/archives/SciTSlst.html

- **TO RECEIVE MESSAGES IN A DAILY DIGEST:** The default setting sends you each message as it is posted to the listserv. To receive one daily digest, instead, go to: http://list.nih.gov/cgi-bin/wa.exe?SUBED1=SciTSlst&A=1 and select “digest” as your subscription type.

- **TECHNICAL PROBLEMS WITH YOUR SUBSCRIPTION?** Contact the list administrator, Judy Kuan, at: kuanj@mail.nih.gov. Please be sure to state that your email is in reference to the SciTS listserv.
Levels of Collaboration Survey

- Measuring Collaboration Among Grant Partners
 - Evaluate collaboration and communication
 - Levels of Collaboration Scale
 - Visually display results of collaboration

<table>
<thead>
<tr>
<th>Safe Schools, Healthy Students Partners</th>
<th>No Interaction at All</th>
<th>Networking</th>
<th>Cooperation</th>
<th>Coordination</th>
<th>Coalition</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mental Health Agency</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Early Childhood Programs</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Parent Education Program</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>School District Prevention Counselors</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>After School Programs Director</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Student Improvement Teams</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Principals</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Teachers</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Police Department</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Funding for Team Science

Comparing (cumulative) number of publications of TD initiative with matched R01 projects from the tobacco field over 10-year period

Centers initial lag in number of publications is eliminated around Project Year 4.

The Science of Team Science

Project Scope

The NRC will conduct a consensus study on the science of team science to recommend opportunities to enhance the effectiveness of collaborative research in science teams, research centers, and institutes. The science of team science is a new interdisciplinary field that empirically examines the processes by which large and small scientific teams, research centers, and institutes organize, communicate, and conduct research. It is concerned with understanding and managing circumstances that facilitate or hinder the effectiveness of collaborative research, including translational research. This includes understanding how teams connect and collaborate to achieve scientific breakthroughs that would not be attainable by either individual or simply additive efforts. The committee will consider factors such as team dynamics, team management, and institutional structures and policies that affect large and small science teams. Among the questions the committee will explore are:

- How do individual factors (e.g., openness to divergent ideas), influence team dynamics (e.g., cohesion), and how, in turn, do both individual factors and team dynamics influence the effectiveness and productivity of science teams?
- What factors at the team, center, or institute level (e.g., team size, team membership, geographic dispersion) influence the effectiveness of science teams?
- How do different management approaches and leadership styles influence the effectiveness of science teams? For example, different approaches to establishing work roles and routines and to the division of labor may influence team effectiveness.
- How do current tenure and promotion policies acknowledge and provide incentives to academic researchers who engage in team science?
- What factors influence the productivity and effectiveness of research organizations that conduct and support team and collaborative science, such as research centers and institutes? How do such organizational factors as human resource policies and practices and cyberinfrastructure affect team and collaborative science?
- What types of organizational structures, policies, practices, and resources are needed to promote effective team science, in academic institutions, research centers, industry, and other settings?

Sponsored by the National Science Foundation and Elsevier, the project began in October, 2012. A report will be issued in late 2014 or early 2015.

Members

Dr. Nancy J. Cooke, Chair, Arizona State University
Dr. Roger Blandford, Department of Physics, Stanford University
Team Composition

Team of Experts ≠ Expert Team
The Winning Model

- Right mix of expertise and team-players
- Intervention/coaching to help use the collective expertise well

Collaboration Enhancement

- Complex societal research problems to require cross-disciplinary collaborative investigation and scholarly activity, with more work being done in teams.
- Effective practices and tools to support the efforts of researchers and research development professionals to initiate and nurture partnerships and secure collaborative extramural research funding are needed.
- Collaboration facilitation necessary to reduce time spent searching, to *find* matches more quickly, and to help make non-intuitive matches—accelerate knowledge discovery.
Research Networking Systems

- Web-based knowledge management system for the research enterprise
- Faculty expertise/profile systems
 - Harvest expertise and scholarship information
 - Automatic ingest from authoritative systems, validated data
 - Interoperability and connectivity with: school-level resources, University enterprise systems, national research networks, publicly available research data, and restricted data about faculty expertise and scholarly/research activity
- Recommender system
- Analytics to evaluate research, scholarly activity, and resources
- Facilitate new collaborations through discovery of expertise
- Intellectual networking vs. social networking
- Research network visualization
Elsevier’s Pure Experts Portal

Facilitate collaborations by exposing publishing connections and make researchers' accomplishments readily discoverable

- Demonstrate researchers' activities to the research community, government agencies, industry, media and the public
- Facilitate cross-institutional collaborations, economic development initiatives and other external partnerships through public portals
- Identify potential collaborators by accessing researchers with similar expertise via semantic profile mapping and via coauthor and institutional visualizations
Share papers and collaborate
Whether you’re a research team, lab, or university class - sharing papers can be a challenge. Simply create public or private groups and start sharing documents instantly.

Communication made easy
Group members can see papers and folders you add to the group on their newsfeed. Keep up-to-date with your collaborators and make working together a walk in the park.

- See when others add documents
- Comment and like to start discussion
- Watch projects progress over time

All your ideas in real-time
Reviewing an article with your colleagues? When a group member adds a note, highlight or summary to a group document, the edit is visible to all the members of the group.
Science of Team Science (SciTS) Library

http://www.mendeley.com/groups/3556001/science-of-team-science-scits/
TEAM SCIENCE GRANTSMANSHIP

“Most of the work still to be done in science and the useful arts is precisely that which needs knowledge and cooperation of many scientists and disciplines. That is why it is necessary for scientists and technologists in different disciplines to meet and work together, even those in branches of knowledge which seem to have least relation and connection with one another.”

Team Science Proposal Development

- Complex Initiatives
 - Central organizing scientific theme or problem that can be addressed by science
 - Several collaborating investigators
 - Multiple projects closely related conducted through a coordinated, collaborative, and cross-disciplinary approach
 - Dispersed

- Multiple Components
 - Administration
 - Research
 - Pilot Projects
 - Capital Equipment
 - Cores
 - Education/Training
 - Clinical /Industrial Translation
 - Community Health
 - Outreach

NIH Common Fund Interdisciplinary Research Consortia
http://commonfund.nih.gov/interdisciplinary/

Capacity Building Opportunities!
Team Grant Proposals

- Integrated effort
- Coordination, interrelationships, cohesiveness, and synergy among the research projects and cores as they relate to the common theme
- Advantages of conducting the proposed research as a team initiative vs. independent research projects
- Mechanisms for regular communication and coordination among investigators in the program
- Appropriateness of leadership/management/administrative structures, and day-to-day operations of the program
Team Science Funding

• NIH & NSF
 – Mechanisms
 – Specific Programs
 – Research Centers
 – Collaborative Admin
 Supplements
 – Joint Programs
 – Intern’l Collaboration
 – Capacity Building

– DOE
– NASA
– DoD
– ED
– NEH
– DOT
– Foundations

http://www.nordp.org/funding-opportunities
Integrated NSF Support Promoting Interdisciplinary Research and Education (INSPIRE) initiative

- Support bold interdisciplinary projects in all NSF-supported areas of science, engineering, and education research
- Proposals must be interdisciplinary (>1 divisions/programs) and potentially transformative

Previously pilot Creative Research Awards for Transformative Interdisciplinary Ventures (CREATIV), now Track 1

- Track 2: Mid-scale sized
- Track 3: Single investigator
Building Research Teams

- **Federal**
 - NIH Exploratory Center Grants (P20)
 - Support planning activities associated with large multi-project program project grants
 - Support for shared resources and several small exploratory research projects (R03-like)
 - Focused on a common research theme
 - Canadian CIHR, NSERC, and SSHRC Planning Grants programs are similar
 - NIH “Repurposed” R13
 - Scientific Meetings for Creating Interdisciplinary Research Teams (R13)
 - NSF Research Coordination Networks (RCN)
 - Research Networks in the Mathematical Sciences (RNMS)
 - NSF Industry/University Cooperative Research Centers Program (I/UCRC) Planning Grant

- **Institutional**
 - Northwestern FSM Dean’s Multi-investigator Seed Grant Program
 - CBC Exploratory Workshops Funding
 - UCSF Team Science Grant
 - U of MI Mcubed
 - Harvard Provost’s Fund for Interfaculty Collaboration
 - University of Texas at El Paso IDR Seed Grant program
 - Mizzou Advantage Program
Opportunities for Early Career Faculty

- Negotiate that an R01-like project on a P01 (PPG) counts as an actual R01 award
- Access to research cores
- Access to capital equipment
- Access to graduate student (and postdoctoral support)
- Access to admin resources
- Likelihood of earlier publication on higher impact manuscripts
- Women scientists who don’t collaborate are less productive
Multiple PI/PDs

- Team approach
- Complex problem
- Project authority and responsibility
- Distribution of credit
- Allocation of funds
- Decision must be consistent with the scientific/program goals of the project
- Must develop a Leadership Plan
Team Development Activities

- Beyond the NIH Leadership or NSF Management Plan
- Identify and engage potential collaborators and assemble the team
- Develop partnerships, a collaborative research agenda, shared conceptual framework
- Consider how to expand the number and type of investigators working in the collaboration
- Promote mentoring, conflict management, cross-talk, integration
- Disseminate findings, sustain the collaboration
- Evaluate process and outcomes
ENHANCING COLLABORATION

“If more work is being done in teams and that work is of greater impact, then surely locating the right members for any team is more important than ever.”

Supporter of Team Science

- NRC Science of Team Science consensus study and report
- UK and Canadian Team Science initiatives
- Annual Science of Team Science (SciTS) Conference
- University of California system annual Team Science Retreat (Elsevier Foundation)
Fostering Collaboration

https://www.elsevier.com/research-intelligence/resource-library/ERI-Collaboration_Brochure
The rich functionality of the Elsevier Research Intelligence (ERI) portfolio helps institutions quickly identify expert collaborators from across disciplines and institutions, facilitating more effective and productive partnerships.

Powered by data from Scopus® and the semantic Elsevier Fingerprint Engine™, the ERI portfolio allows institutions to:

- Identify current and discover potential collaborators
- Provide data-driven analysis of collaborative behavior and impact
- Deliver insight into how institutions can facilitate more powerful collaborations
SciVal

Develop Collaborative Partnerships on a Global Scale

- Identify and analyze existing and potential collaboration opportunities based on publication output and citation impact;
- Explore rich visualizations of your institution’s current and prospective research partnerships across sectors;

- Identify **top collaborative institutions**, geographic regions, countries and co-authorship;
- Gain insight into the key players in **emerging research fields** to find potential new collaborators.
Analytical Services

Custom Analyses to Understand Institutional Research Performance Through Collaboration

- Intra- and inter-institutional collaboration;
- National and International collaboration;
- Cross-sector collaboration

International Collaboration
In what areas does our country or institution collaborate the most internationally?

Improving and building partnerships
Who are our most prolific collaboration partners according to the effect of the collaboration on both partners' citation impact?
Copyright Information

This work by Holly J. Falk-Krzesinski, PhD is licensed to ACRL NJ under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) License.

You are free to:

- Share — copy and redistribute the material in any medium or format
- Under the following terms:
 - Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 - NonCommercial — You may not use the material for commercial purposes.
 - NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
 - No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
 - The licensor cannot revoke these freedoms as long as you follow the license terms.

Notices:

- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.